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Abstract
The purpose of this technical note is to concisely describe the statistical and computational

limitations of the common least-squares (LS) estimator, when applied to the problem of shuffled
linear regression. Here, we reference results that show that the LS estimator is NP-hard when
the dimensionality of the input features is greater than one. When the dimensionality of
the features is one, the LS estimator is nevertheless inconsistent. These results motivate the
development of other estimators for shuffled regression, and we reference works in this direction.

1 Introduction
This note concerns shuffled linear regression, a variant of classical linear regression in which the
mutual ordering of the input features and labels is not known. Alternatively, one can consider the
labels as perturbed by an unknown permutation during the generative process. More concretely, the
learning setting is defined as follows: we observe (or choose) a matrix of input features X ∈ Rn×d,
and observe a vector of output labels y ∈ Rn that is generated as follows:

y = Π0Xw0 + e (1)

where Π0 is an unknown n×n permutation matrix, w0 ∈ Rd are unknown coefficients, and e ∈ Rn

is additive Gaussian noise drawn from N (0, σ2). Here, n is the number of data points, and d is the
dimensionality of the input features.

The generative model described by (1) and illustrated in Figure 1 is motivated by certain
experiments and datasets that simultaneously analyze a large number of objects, such as flow
cytometry [1]. Shuffled regression is also useful in other contexts where the order of measurements
is unknown, such as simultaneous pose-and-correspondence estimation in computer vision [2] and
in relative dating from archaeological samples [3]. An important setting where the feasibility of
shuffled regression raises concern is data de-anonymization, such as of public medical records, which
are sometimes shuffled to preserve privacy [4].
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Figure 1: Generative model for shuffled linear
regression. We show the generative model for the
data as a graphical model, where arrows signify prob-
abilistic or deterministic dependencies. Observed
data are shaded and unobserved variables are clear.
The parameters outside of the rounded rectangles
are shared across all n data points. The relation-
ship between variables is as follows: µi = xi · w0,
ỹi = µi +N (µi, σ

2), y = Π0 · ỹ. The goal of shuffled
linear regression is to estimate the latent variable w0.
This figure is reproduced from [5] with permission.

2 Least-Squares (LS) Estimator
The standard estimator for shuffled linear regression is the least-squares (LS) estimator, which
has also been referred to as the “maximum-likelihood estimator” [6], and denotes the following
optimization problem to estimate the linear coefficients:

ŵ = arg min
w

min
Π∈P
||y −ΠXw||2, (2)

where P is the set of all n× n permutation matrices. It is a natural extension of the ordinary least
squares (OLS) estimator for shuffled linear regression. Approximations to the LS estimator based
on alternating optimization have been studied in [5, 7].

3 Limitations of the LS Estimator

3.1 NP-hardness: d > 1
In [6], the authors studied the computational properties of the LS estimator. Their results, as
described in Theorem 4 of the original paper, showed that there exist inputs X for which the
shuffled linear regression problem is NP-hard, which they proved as a reduction from the NP-hard
partition problem. While the authors did not prove these results for randomly-chosen input features,
they conjectured that the same NP-hardness would extend to the random design case.

The authors state, however, that their hardness results do not apply when the dimensionality
of the input data is 1. In fact, they propose a simple algorithm that runs in O(n logn) time, which
sorts the labels y in the same order as the input features X, and then performs ordinary linear
regression. However, as we note next, the LS estimator suffers a different problem when d = 1.

3.2 Inconsistency: d = 1
In [8], the authors specifically examined the statistical properties of the LS estimator for the case of
d = 1. They proved that, in the presence of additive noise, that the LS estimator is inconsistent. For
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the inconsistency results, stated in Theorem 1 of the original paper, the authors chose a random-
design setting for X. Yet, their empirical results showed that the amplification bias of ŵ, which
they proved occurs in the case of infinite samples, was also present in fixed-design input features.
The authors conjectured that their results regarding inconsistency extended to higher dimensions.

4 Conclusion and Future Work
In tandem, the two results that we have referenced in this paper show that, for any dimensionality,
the least-squares estimator suffers a statistical or computational limitation. However, this is not
meant to suggest that there exists no consistent, efficient estimator for shuffled linear regression.
For example, the authors of [8] suggest a simple estimator based on the method of moments for the
case d = 1 which is both efficient and consistent under mild conditions.

These results motivate the development of other estimators for shuffled linear regression. For ex-
ample, the authors of [5] and [9] develop separate polynomial-time approximations to the maximum-
likelihood estimate of the weights. However, these estimators yield rough approximations, and we
believe that an open area of research remains to develop regression algorithms that can be practi-
cally applied to real datasets with shuffled labels.
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